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ABSTRACT 

The consequences of the energy transition are causing a 

far-reaching change in the electricity supply system. To 

analyse these changes, load scenarios for future power 

grids are essential. The largest energy consumption is 

within the fast-growing building sector, which has 

therefore a large impact on these scenarios. This paper 

presents an approach to optimize load demand scenarios 

and possible expansions regarding the energy efficiency of 

buildings. The optimization problem is modelled bottom-

up and solved using a neural network, which is trained 

with reinforcement learning. Two different training 

methods, iterative or incremental, are evaluated. 

Exemplary results demonstrate that the evaluated 

reinforcement learning agents are able to achieve a 

significant cost reduction of the considered buildings 

through efficiency measures. The evaluated training 

methods show that Proximal Policy Optimisation results 

in a higher cost reduction than Advantage Actor Critic 

optimisation and show a more robust performance over 

the different complexities. 

INTRODUCTION 

The current climate change as well as the latest political 

gas conflict demonstrate the high impact of the energy 

sector and point out how indispensable a change towards 

more sustainability and renewable energies is. The 

consequences of the energy transition are causing a 

profound change in the power supply system, making 

future grid scenarios difficult to predict. The sustainability 

of the energy supply and the improvement of energy 

efficiency in the building sector, where the integration of 

sustainable energy technologies is required, are key 

factors. The building sector is responsible for about 40% 

of end-use energy consumption and 36% of all CO2 

emissions in Europe [1].  

European climate targets include a near-climate-neutral 

building stock by 2050, with an 80% reduction in primary 

energy demand and the generation of at least 50% of 

energy from renewable sources to achieve this [2]. With a 

projected doubling of the current international building 

stock up to that point as well as the current EU renovation 

wave of three percent, meeting these targets is a major 

challenge [3]. As part of the Climate Protection Program 

2030, funding programs for energy-efficient construction 

and renovation have therefore been increased, which has 

led to a significant increase in demand for subsidized 

energy consulting for buildings in recent years [1].  

New ideas and methodologies are needed to realize this 

change in the building sector for maintaining climate 

policy goals. In addition to structural changes, building 

independent upgrades such as the use of photovoltaic (PV) 

systems and heat pumps increase the energy efficiency of 

a building and thus represent an opportunity for overall 

improvement in the energy performance of the building. 

The consequences resulting from these changes in the 

building sector have a large impact on the electricity grid, 

especially on the low and medium voltage grids [4]. To 

estimate the consequences for the power infrastructure 

more accurately, the buildings are modelled with a bottom-

up approach. The model optimizes the investment decision 

by reducing energy consumption of buildings through 

structural changes and building-independent upgrades. 

This model is solved with a neural net, which is trained by 

reinforcement learning.  

METHODOLOGY 

This paper presents a modelling approach for a bottom-up-

modelling of building to determine their impact on the low 

and medium voltage grid (Figure 1). The following 

terminologies are used: 

• A component 𝐵 is a structural part of a building 

with a constant heat transfer coefficient (e.g. a 

wall). 

• An object 𝑁 consists of at least one component. 

• A virtual building is the combination of several 

objects to form a complete representation of a 

building. 

• A building independent expansion is the 

installation of DER such as PV. 
 

In this approach, a building consists of several objects (e.g. 

walls, doors), which can be modified with e.g. insulation. 

The investment decision on the expansions is based on the 

minimalization of the overall costs of heating, electricity 

and expansion (see chapter Virtual building with extension 

options). The determination of the optimal solution for 

each building is solved as a combinatorial optimisation 

problem (see chapter Defining the expansion decisions as 

a combinatorial optimization problem), which are solved 

using neural networks (NN). The NN are trained with 

reinforcement learning (RL) (see chapter Reinforcement 

learning). In contrast to a probability-based approach, the 

chosen method does not require the determination of 

probabilities of possible grid states. Therefore, the chosen 

method can estimate the impact on distribution grids for a 
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wide variety of scenarios for e.g. different technology and 

cost developments under great uncertainty.  

 

 
 

Figure 1: Overview of the bottom-up model of a virtual building 

which is divided into different components and optimized 

considering decentralized energy resources (DERs). 

Energy Efficiency Optimization Model 

The model developed in this paper aims to identify 

expansion decisions that optimise the energy costs of a 

building. Data of the building and its environment (e.g. 

weather data) are used as input parameters for the building 

model. To optimise buildings with regards to energy 

efficiency, the optimal extension is depicted as a 

combinatorial optimization problem. The optimization 

problem is solved with a trained NN.  

Figure 2 shows an overview of the model. The building is 

modelled using a bottom-up design. Therefore, this model 

is flexible with regards to input data (e.g. weather 

conditions, insulation on door and windows).  
 

 
 

Figure 2: Model overview: With the input data set, the decision 

model consisting of different expansion options formulated as a 

combinatorial optimization problem generates results using a 

reinforcement learning approach. The results represent optimized 

buildings with reduced energy consumption and the associated 

optimal expansion decisions. 
 

To reduce the complexity of the bottom-up optimization, a 

clustering of the building components is used for a 

dimensional reduction, which is advantageous with 

increasing building complexity. The neural network learns 

how to optimise the building by varying structural changes 

(e.g. additional insulation, replacement of windows) and 

building-independent expansions (use of decentralized 

energy resources (DER), e.g. new construction of a PV 

system or heat pump). The results represent optimised 

buildings with reduced energy consumption and the 

associated optimal expansion decisions. 

 

Virtual building with extension options 

Component upgrades (e.g. windows, walls, doors) exist for 

each component 𝐵. Changes in the heat transfer coefficient 

and thus the transmission heat loss (THL) can be made in 

the building components through expansion. The THL is 

directly related to the energy demand of a building 

component, so changes have a direct impact on the 

absolute energy demand. The expansion of a component 

causes investment costs 𝐶𝐼𝑁𝑉𝐸𝑆𝑇𝐶𝑂𝑀, which depend on the 

properties of the component, such as the surface area, and 

the selected expansion option. In the case of a combination 

of several components, the THL and the costs result from 

the sum of the THL and upgrade costs of the individual 

components. For building modeling, the building shell 

method is used, according to which the heating load can be 

determined from the sum of transmission and ventilation 

heat losses [5] [6]. After combining several components 

into buildings, DER expansion options can be perceived. 

In contrast to the component upgrades, no influence is 

exerted on the absolute energy demand, but the self-

consumption is changed. This expansion causes further 

investment costs 𝐶𝐼𝑁𝑉𝐸𝑆𝑇𝐷𝐸𝑅. As a result, the total costs of 

an optimized object 𝑁 can be calculated as 

𝐶𝐼𝑁𝑉𝐸𝑆𝑇(𝑁) =  ∑ 𝐶𝑒
𝐼𝑁𝑉𝐸𝑆𝑇𝐷𝐸𝑅

𝑒∈𝐸

+ ∑ 𝐶𝑏
𝐼𝑁𝑉𝐸𝑆𝑇𝐶𝑂𝑀

𝑏∈𝐵

 (1) 

The energy costs 𝐶𝑇𝐼𝑀𝐸(𝑁) determined for a fixed period 

enables a comparison of different components. Due to the 

direct correlation of the required electrical energy to heat 

energy costs, a cost reduction also leads to an increased 

energy efficiency of an object. Consequently, the search 

for a combination of measures for maximum cost 

reduction represents the objective function.  

 

Defining the expansion decisions as a combinatorial 

optimization problem 

Let 𝐽 = {𝑗1, 𝑗2, … , 𝑗𝑛} be the set of all permissible 

combinations of expansion measures. The perception of a 

combination 𝑗 determines the condition of an object and its 

costs. The total costs of an object are defined as follows: 

𝐶(𝑁𝑗) = 𝐶𝐼𝑁𝑉𝐸𝑆𝑇(𝑁𝑗) + 𝐶𝑇𝐼𝑀𝐸(𝑁𝑗) (2) 

The aim is to find an optimal combination 𝑗𝑜𝑝𝑡 ∈ 𝐽 such 

that 𝐶(𝑂𝑗𝑜𝑝𝑡 ) ≤ 𝐶(𝑂𝑗) for all 𝑗 ∈ 𝐽. For that the set of all 
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combinations must first be determined. The cardinality of 

this set |𝐽| depends on the complexity of the object. Each 

component 𝑏 ∈ 𝐵 is the instance of a class 𝑘 ∈ 𝐾. Let 𝐵𝑘 

be the subset of all components 𝐵 of type 𝑘. A limited 

number of upgrades is defined for each class. 

Consequently, for each component instance 𝑏𝑘 ∈ 𝐵𝑘 there 

exists a finite set of upgrades 𝐼𝑘. For each of these options 

𝑖 ∈ 𝐼𝑘 there is a set of potential actions 𝑀𝑖. The number of 

combinations for the component upgrades is calculated as 

follows: 

∏ ∏|𝑀𝑖|
|𝐵𝑘|

𝑖∈𝐼𝑘𝑘∈𝐾

 (3) 

The DER expansion 𝐸 can be modelled analogously. For 

each expansion 𝑒 ∈ 𝐸, a limited number of expansion 

options is given. The set 𝑀𝑒 describes these available 

measures, so that the number of combinations results in: 

∏|𝑀𝑒|

𝑒∈𝐸

 (4) 

The product of the number of combinations for the 

component upgrades and DER expansion gives the total 

number of all combinations |𝐽|. 

|𝐽| = ∏ ∏|𝑀𝑖|
|𝐵𝑘|

𝑖∈𝐼𝑘𝑘∈𝐾

∗ ∏|𝑀𝑒|

𝑒∈𝐸

 (5) 

For each set 𝑀 a measure 𝑚0 ∈ 𝑀 is defined, which 

describes the original characteristic of an object. For all 

expansion options |𝑀| ≤ 2. 

The complexity of the number of possible combinations 

therefore grows exponentially with the number of 

components and DER expansion. Let 𝑛 = |𝐸| + |𝐵| be 

this number. The use of a brute-force algorithm 𝑓 to solve 

this problem leads to a complexity of 𝑓 ∈ 𝑂(2𝑛), which is 

consequently not solvable in polynomial time. In the 

context of this paper, reinforcement learning will therefore 

be used to solve the problem [7]. 

 

Reinforcement learning  

To use reinforcement learning, the problem must be 

formulated as a Markov Decision Problems (MDP). An 

agent interacts with an object that change the state of the 

object and receives a reward that depends on the costs 

incurred. The environment describes the object itself and 

its environmental parameters (Figure 2). 

There are different methods to solve combination 

problems with RL [8]. In the incremental method, the 

agent carries out individual expansion measures one after 

the other. An action is therefore equivalent to the choice of 

exactly one expansion measure [9] [10]. The action space  
|𝐴𝐼𝑁𝐾| is discrete. 

With the iterative method, an action represents a complete 

expansion decision for the entire object. In this case, a 

measure is assigned to each expansion option. One 

possible combination 𝑗 ∈ 𝐽 is selected per timestep. The 

action space 𝐴𝐼𝑇 is therefore identical with the set of all 

combinations 𝐽. 

The agent's reward 𝑅 is identical in the incremental and 

iterative methods and is defined by the negative cost of an 

object regarding demand and invest. Due to the discrete 

solution spaces, the algorithms that can be considered for 

this optimisation problem are limited. Algorithms that 

operate exclusively in continuous action spaces (e.g. Deep 

Deterministic Policy Gradient (DDPG)) cannot be applied 

to the problem. Furthermore, the cardinality of the action 

spaces is decisive for the selection of the methods and 

policed-based methods are well adapted for proportionally 

increasing decision amounts. This increases proportionally 

for both incremental and iterative methods. 

Therefore, the use of policy-based methods promises the 

greatest success. Compared to value-based methods, the 

exact value of all actions does not need to be known to 

identify the best action. In related research [11] [12] [13] 

[14], policy gradient methods have already been successful 

in solving combinatorial optimisation problems. Due to 

high stability and generalisation possibilities for further 

development steps, which are essential in the 

implementation of bottom-up design, a Proximal Policy 

Optimisation (PPO) algorithm is used for training the 

agents and an Actor Critic method with an advantage 

function (A2C) is used, as shown in Figure 3 [15]. 
 

 
 

Figure 3: Overview and categorization of selected RL 

algorithms. 

RESULTS 

Several agents are trained in incremental (Inc) and iterative 

(It) design with PPO and A2C. During training, an agent 

goes through several decision processes for which actions 

must be selected. The length 𝐿 of a decision process 

corresponds to the number of expansion decisions to be 

made. For each decision process, a new randomised 

building is generated. For training all variable and constant 

parameters of the object and its environment are randomly 

chosen within predefined limits. Several different 

architectures of neural networks are trained for the actor 

𝜋𝜃 and critic 𝜗𝜑. The feedforward neural networks differ 

in their number and size of layers. After agent training, 

they are tested on generated buildings, where the 

evaluation objects are created using the same principle as 

the training objects with randomly chosen parameters. 

The costs of the individual components are summed up and 
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compared for different agents and network architectures 

and serve as the main evaluation criterion. In the 

following, different training and test designs are presented, 

which differ in the complexity (K1-K3) of the considered 

objects: 

• Optimisation of single object (K1) 

• Optimisation of two individual objects (K2) 

• Optimisation of assemblies consisting of six 

objects (K3) 
 

The objects are considered within a constant time period 

with a constant electricity price*. 

The following metadata were used: 

• |𝐽|: Number of possible combinations 

• |𝐴𝐼𝑁𝐶| or |𝐴𝐼𝑇|: Size of the action spaces for 

incremental or iterative design 

• 𝐿: Length of a decision process 

• 𝑛: Number of actions executed in the training 

• 𝑛𝑂: Number of objects for evaluation 

• 𝐾𝑁𝑁: Network architectures of the actor and the 

critic specifying the layers 
 

The results of the objects with |𝐵| = 2 are shown below in 

Table 1. The number of possible combinations of 

expansion options is 3,2e5. The neural networks of the 

actor and critic were trained in 20.000 timesteps and 

evaluated on 10.000 components. Within a decision 

process, six actions are executed. 
 

Table 1: Algorithm Metadata of the executions in K2. 

|𝐽| |𝐴𝐼𝑁𝐶| |𝐴𝐼𝑇| 𝐿 𝑛 𝑛𝑂 𝐾𝑁𝑁 

3,2e5 50 3,2e5 6 2e5 1e4 32x32 

64x64 

128x128 

512x512 
 

For objects with |𝐵| ≤ 2, the calculation of the optimal 

costs is still feasible. Figure 4 compares the results of 

different network architectures, aggregating the costs of 10 

components. The average value of all trained agents is 

1.05e7 €, of the random agent 6.86e7 € and the optimal 

value 3.97e6 €. Across all networks, the PPO agent has 

shown the most significant cost reduction. 
 

 
 

Figure 4: Overview of the results of the different KNNs in K2. 

To illustrate the sum of the individual object costs, Figure 

5 shows the costs of the three complexity categories (K1, 

K2, K3) as an example. In addition, the calculated optimal 

costs are given as a comparison. The training results are 

 
* 10 years and 0,32 €/kWh 

agents with a network architecture with 64x64 layers.  

As an example, K2 can be mentioned here again: With this 

architecture, the best result is achieved with an A2C agent 

in incremental design. The cost of the incremental A2C 

agent, shown in Figure 5 (top right), is 8,5 % of the cost 

obtained by random actions of an untrained agent. The 

optimal cost is 5,8 % of the cost of the random agent. This 

corresponds to 1,9 % (A2C Ink) and 1,3 % (Optimal) of 

the original cost. 

 

 
Figure 5: Cost and average reward from the agents (64x64 KNN) 

compared to original and optimal values for K1, K2 (top) and K3 

(bottom). 

For all complexity categories, reducing costs and thus 

increasing energy efficiency can be achieved in the 

objects. All agents can achieve a learning outcome and 

better results in each training cycle than a random agent 

The selected reinforcement learning methods are therefore 

suitable for solving the combination problem described. 

Across all training and test iterations, the PPO agent 

trained in incremental design shows the most stable and 

reliable results for reducing costs. It achieves both the 

lowest mean value and the lowest absolute values in two 

out of three complexity categories. In general, agents using 

the PPO algorithm are more successful in optimising the 

objective function than agents trained with A2C. 

For both agents, lower costs can be achieved using an 

incremental design. The reason for this is the high 

cardinality of the action spaces in the iterative design, 

whereby an agent only gains experience for a limited 

number of actions while training, which is a cause for the 

reduced performance of the iterative agents. 
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CONCLUSION 

The aim of the work is to identify and evaluate 

reinforcement learning methods for improving the energy 

properties of buildings through structural changes. For this 

purpose, a combination problem was formulated as an 

MDP regarding optimal extension decisions in order to test 

different reinforcement learning architectures. The 

presented experiments are related to structural expansions 

of different complexity. In the evaluation, A2C and PPO 

algorithms were used to train RL agents of different 

designs to minimise a cost function. The results can be 

summarised as follows: 

• The evaluated RL agents were able to achieve a 

significant cost reduction of the considered 

objects.  

• Agents using the PPO algorithm are more 

successful in minimising the objective function 

than A2C agents and are able to show more stable 

behaviour across complexities and designs. 
 

Therefore, the chosen methods are suitable for decision 

making to improve the energy efficiency of the building.  

This model depicts the basics for a comprehensive 

approach to analyse the impact of different technologies 

on the distribution grids. Further research will focus on 

continuing the model with load flow calculations.  

 

 Furthermore, a combination of RL methods with other 

algorithms will be developed. These algorithms can be 

developed that exclude actions and combinations to reduce 

the action sparce that would, for example, lead to an 

increase in costs. By clustering similar components, a 

general dimension reduction can also be made. 

ACKNOWLEDGMENTS 

This project received funding from 

the German Federal Ministry of 

Economic Affairs and Climate 

Action under the funding No. 

03EI6053B. 

REFERENCES 

 

 

[1]  S. Becker, J. Hagen, R. Krüger et A. Exner, DENA-

Gebäudereport 2023, Berlin: Deutsche Energie-

Agentur GmbH (dena), 2022.  

[2]  D. V. Bürger, D. T. Hesse, D. A. Palzer, B. Köhler, 

S. Herkel, D. P. Engelmann et D. D. Quack, 

Klimaneutraler Gebäudebestand 2050: 

Energieeffizienzpotenzialeund die Auswirkungen 

des Klimawandels auf den Gebäudebestand, 

Freiburg im Breisgau: Umweltbundesamt, 2017.  

[3]  . e. V. Bundesverband der Energie- und 

Wasserwirtschaft, «BDEW Energie. Wasser. 

Leben.,» 09 Januar 2023. [En ligne]. Available: 

https://www.bdew.de/service/daten-und-

grafiken/bdew-strompreisanalyse/. 

[4]  R. Jackson, E. Zhou et J. Reyna, «Building and grid 

system benefits of demand flexibility and energy 

efficiency,» Joule Previews, pp. 1921 - 1933, 18 08 

2021.  

[5]  DIN e. V. (Hrag.), DIN TS 12831-1: Verfahren zur 

Berechnung der Raumheizlast, Berlin: Berlin, 2020.  

[6]  DIN e. V. (Hrag.), DIN EN 12831-1: Energetische 

Bewertung von Gebäuden –Verfahren zur 

Berechnung der Norm-Heizlast, Berlin: Berlin, 

2017.  

[7]  P. Gritzmann, Grundlagen der Mathematischen 

Optimierung: Diskrete Strukturen, 

Komplexitätstheorie, Konvexitätstheorie, Lineare 

Optimierung, Simplex-Algorithmus, Dualität, 

Wiesbaden: Springer Vieweg, 2013.  

[8]  P. D. E. Alpaydin, Maschinelles Lernen, Berlin, 

Boston: De Gruyter Oldenbourg, 2019.  

[9]  N. Mazyavkina, S. Sviridov, S. Ivanov et E. 

Burnaev, Reinforcement Learning for 

Combinatorial Optimization: A Survey, Lisboa: 

Computers & Operations Research Volume 134, 

2021.  

[10]  J. Schulman, F. Wolski, P. Dhariwal, A. Radford et 

O. Klimov, «Proximal Policy Optimization 

Algorithms,» Computer Science, p. eprint 

arXiv:1707.06347, 2017.  

[11]  S. Kim et H. Lim, «Reinforcement Learning Based 

Energy Management Algorithm for Smart Energy 

Buildings,» School of Electrical Engineering and 

Computer Science, Gwangju, 2019. 

[12]  K. Mason et S. Grijalva, «A review of reinforcement 

learning for autonomous building energy 

management,» Computers & Electrical 

Engineering, pp. 300-312, 09 2019.  

[13]  A. Perera et P. Kamalaruban, «Applications of 

reinforcement learning in energy systems,» Urban 

Energy Systems Laboratory, Dübendorf, 2021. 

[14]  M. Rose, L. Lenz, T. Sowa et I. Hebbeln, «Planning 

LV grids by predicting residual loads of households 

via methods of machine learning,» chez CIRED 

2020 Berlin Workshop, Berlin, 2020.  

[15]  V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. 

Lillicrap, T. Harley, D. Silver et K. Kavukcuoglu, 

«Asynchronous Methods for Deep Reinforcement 

Learning,» chez The 33rd International Conference 

on Machine Learning, New York, 2016.  

 


